Detailed listing of Hudson’s Algorithm

In this section we provide a detailed description of our implementation of Hud-

son’s algorithm. First, we require some notation. Let Ra(&1,...,&k) define
a single independent sample from a random variable with distribution A and
parameters &1,...,&k. (Note that each instance of Ra(&1,...,&k) within an

algorithm listing represents an independent random sample from the specified
distribution.) Using this notation, we define Ry (A) to be an element of the
set A chosen uniformly at random, and Rg()\) as a sample from an exponen-
tially distributed random variable with rate A. We use a simple linked list
representation of ancestral segments such that for a segment z, prev(z) de-
notes the previous segment to z in the linked list, and similarly next(z) denotes
the next segment. Let A denote a special segment indicating the end of a
chain (the null reference is convenient for this purpose in many languages). Let
z + Segment (4, r, u, z,y) denote a newly allocated segment such that left(z) = ¢,
right(z) = r, node(z) = u, prev(z) = x and next(z) = y. We sometimes omit
the last two parameters for convenience; in this case, they are implicitly defined
as A, and therefore Segment (¢, r,u) = Segment (¢, r,u, A, A). Each element of a
linked list of these segments corresponds to a contiguous block of ancestry in
which we map the node u to the half-closed interval [¢, ).

During recombination events we choose a breakpoint randomly and split the
ancestral material within an ancestor at that point. We model these breakpoints
as ‘links’ between adjacent sites. We use a binary indexed tree (Fenwick, 1994,
1995) L to track the cumulative number of links subtended by each extant seg-
ment (segments are ordered arbitrarily in this cumulative sum over the segments
in extant ancestors). A segment z subtends right(x) —left(z) — 1 links if it is the
first in a chain; if it is not, it subtends right(x) — right(prev(z)). That is, a seg-
ment is associated with all the links that fall both within the interval it covers
and also with the links that fall in the interval between it and its predecessor.
To set the number of links mapped to a segment x to v, we use the notation
L, <+ v. To find the total number of links subtended by all segments, we use
total(L), and to obtain the cumulative number of links subtended by segment
x, we use total(L, z). Finally, find(L,v) returns the last segment whose cumu-
lative sum is < v. Using these tools we can randomly choose a link and find the
segment that subtends it in logarithmic time.

Termination of Hudson’s algorithm works by a gradual process of removing
segments in which the MRCA has been reached. We implement this by main-
taining a map S that counts the number of extant segments intersecting with
a given interval. We use a balanced binary tree (Knuth, 1998, §6.2.3) to store
this map. To assign a value v to key k, we write S < v. The data struc-
ture supports two further operations: search(S, k) returns the largest key < k,
and nextkey(S, k) returns the smallest key > k. For each key k, Sy counts the
number of extant segments in the interval [k, nextkey (.S, k)). As the simulation
proceeds we update this map to account for coalescences that occur, inserting
keys and decrementing the counts as necessary.



Algorithm H. (Hudson’s algorithm). Simulate the coalescent with recombina-
tion for a sample of n individuals on a sequence of m sites with recombination
at rate r per generation between adjacent sites.

H1. [Initialisation.] Set P « (), C' + (), S + BalancedBinaryTree() and L «
BinaryIndexedTree(). Then, for 1 < j < n, set x + Segment(0,m, j),
L, + m—1and P+ PU{z}. Finally, set So < n, Sy + -1, w+n+1
and t < 0.

H2. [Event.] Set A, < rtotal(L), A <= A+ |P| (|P|—1), and set t + t+Rg(A).
If Ry ([0,1)) < Ar/A, invoke Algorithm R; otherwise, invoke Algorithm C.

H3. [Loop.] If |P| # 0 go to H2 .

The basic structure of Hudson’s algorithm is very simple. We begin in H1
by allocating the set P to represent the extant ancestors and C' to store our
coalescence records. We also allocate the balanced binary tree S and the binary
indexed tree L as discussed above. We then allocate a segment = covering the
interval [0, m), that points to node j for each individual 1 < j < n in the sample,
record that this segment subtends m — 1 links and then insert it into the set
of ancestors P. Afterwards, we initialise the map S by setting Sy < n and
S < —1 (stating that the number of extant segments in the interval [0,m) is
n), set the next available node w to n 4+ 1 and our clock ¢ to zero.

In H2, we calculate the current rate of recombination and common ancestor
events, and increment ¢ accordingly. We then choose the type of the next event
and invoke either Algorithm R or Algorithm C. Once the appropriate subroutine
has completed, we move on to H3, where we either terminate or loop back to
H2. Upon termination, C' contains the set of coalescence records that defines
the output of the algorithm.

Algorithm R implements a single recombination event by choosing a link
uniformly and breaking it, resulting in a new individual being added to the
set of extant ancestors. There are two possibilities for this link: it is either
between two segments or within a segment, and these possibilities are dealt
with separately in steps R2 and R3, respectively. In either case, z points to the
head of the segment chain representing the new individual, which is inserted
into P in step RA4.

Algorithm R. (Recombination event). Choose a link uniformly and break it,

resulting in one extra individual in the set of extant ancestors.

R1. [Choose link.] Set h < Ry ({1,...,total(L)}), y < find(L, h), k < right(y)—
total(L,y) + h — 1 and = < prev(y). Then, if left(y) < k go to R3.

R2. [Break between segments.] Set next(z) < A, prev(y) « A, z + y and go
to R4.

R3. [Break within segment.] Set z < Segment(k, right(y), node(y), A, next(y)).
Then, if next(y) # A, set prev(next(y)) + z. Afterwards, set next(y) < A,
right(y) - k and L, < L, + k — right(z).

RA4. [Update population] Set L, < right(z) — left(z) — 1 and P < P U {z}.



The algorithm begins in step R1 by choosing a link A uniformly from the
total(L) that are currently being tracked. We then find the segment y that
subtends this link using the binary indexed tree find function. Once we have
found the segment in question, we then calculate the corresponding breakpoint
k, so that we can determine whether link A falls within y or between y and its
predecessor x. Thus, if the breakpoint k& > left(y), we go to R3, and otherwise
proceed to step R2.

Step R2 is very straightforward. Because the breakpoint k is between the
two segments x and y, we must simply break the forward and reverse links in
the segment chain between them. After breaking these links, we now have an
independent segment chain starting with z, which represents the new individual
to be added to the set of ancestors. On the other hand, if the breakpoint k falls
within y, we must split this segment in step R3 such that the ancestral material
from left(y) to k remains assigned to the current individual and the remainder
is assigned to the new individual z. We must also update the number of links
subtended by the segment y, which has right(z) — k fewer links as a result of
this operation. Finally, step R4 inserts the segment z into the set of ancestors,
since this is the first segment in the new individual. However, we must also
update the information about the number of links subtended by this segment.
Since z is the head of a new segment chain, there is no previous segment, and
the number of links it subtends is right(z) — left(z) — 1. After this, we complete
the recombination event, returning to Algorithm H.

Algorithm C implements a single common ancestor event, where we choose
two individuals randomly and merge their ancestral segment chains. If these two
ancestors have overlapping segments we record the corresponding coalescence
events. When a coalescence occurs, we decrement the number of extant segments
in the corresponding interval by updating S. When this value is reduced to 1,
we discard the corresponding segment since it can have no further effect on
the genealogies we are interested in. Thus, the algorithm always removes two
individuals from the set of ancestors P, but may reinsert zero or one, depending
on whether any ancestral segments remain after merging. By this process the
size of P is eventually reduced to zero and Hudson’s algorithm is complete.

Algorithm C. (Common ancestor event). Choose two ancestors uniformly and
merge their segments, recording any coalescences that occur as a consequence.

C1. [Choose ancestors.] Set x + Ry(P), y « Ry(P \ {z}). Then, set P «
P\ {z,y}, z < A and ¢ < 0.

C2. [Loop head] If x = A and y = A, terminate the algorithm. Set o <+ A. If
x # A and y # A go to C3. Otherwise, if z # A set @ +— x and set x < A.
If y # A set a + y and set y < A. Go to C8.

C3. [Choose case| If left(y) < left(x), set 8 + z, © + y and y + B. Then,
if right(x) < left(y), set o < &, & < next(x), next(a) < A and go to C8;
otherwise, if left(x) # left(y) set a < Segment(left(x), left(y), node(x)),
left(x) « left(y) and go to C8.



C4. [Coalescence] If ¢ = 0, set ¢ + 1 and w < w+1. Afterwards, set u + w—1,
£+ left(x) and r* < min(right(z), right(y)). If £ € S, set j + search(S, ¢)
and Sy < S;. Similarly, if r* € S, set j < search(S,7*) and S,» + Sj.
Then, if S; # 2 go to C6.

C5. [Segment MRCA] Set Sy < 0 and r < nextkey(S, ¢). Go to C7.

C6. [Decrement overlaps.] Set r < £. Then, while S, # 2 and r < r*, set
Sy = S; —1 and r < nextkey(S,r). Afterwards, set o < Segment (¢, r, u).

C7. [Update z and y] Set C + CU{(¢,r,node(x),node(y), u,t)}. If right(x) =
r, set &  next(x); otherwise, set left(x) « r. If right(y) = r, set y +
next(y); otherwise, set left(y) < r.

C8. [Update links] If & = A go to C2. If z = A set P «+ P U {a} and L, +
right(a) — left(a) — 1; otherwise, set next(z) + a and L, « right(a) —
right(z). Afterwards, set prev(a) « z, z < « and go to C2

We begin in step C1 by choosing our individuals z and y and removing them
from the set of ancestors. We then set the tail of the segment chain representing
the common ancestor z to the null segment A, and then proceed into the main
loop of the algorithm. This loop is controlled in step C2, and works by taking
the leading segment from the x and y chains at each iteration and processing
it. Once all segments have been consumed, we exit. Therefore, if both x and y
are null, this loop has completed and we terminate the algorithm. Otherwise,
we set a to the null segment. Throughout, we use this variable to point to
the next segment that is to be merged into the segment chain representing the
ancestor of the two chosen individuals. The last-merged segment in this chain is
pointed to by z, and the necessary operations to include « into the global state
are carried out in step C8.

Returning to the head of the loop in C2, if either x or y is null we have
reached the end of one of the segment chains, and all that remains to do is
attach the remainder of the non-null chain to our new individual. If both x and
y are non-null, on the other hand, we proceed to C3. In this step we consider
the two segments x and y and decide which of a number of cases we must deal
with. First, we maintain the invariant that left(z) < left(y); if this is violated,
we swap the variables. Then, we address the various cases that can occur as x
and y overlap.

The simplest case is when there is no overlap between x and y which occurs
when right(z) < left(y); here, we simply merge x into the new segment chain
and move on to C8. The next case we deal with is when we have a partial
overlap between x and y, which occurs when left(x) # left(y). In this case, we
create a new segment to represent this ‘overhang’, and merge this into the new
segment chain in C8. Finally, if none of these conditions have been satisfied, we
know that left(z) = left(y) and there is therefore a coalescence which we handle
in C4.

First, we check if another coalescence has occurred during this common
ancestor event. If not, we set our flag ¢ < 1, and increment the next node w.
Afterwards, we set the parent node for this coalescence u, and set £ and r* to



the boundaries of the coalescing interval. We then check if £ and r* are in S so
that we can subsequently update the number of extant segments in the intervals
to account for the coalescence. There are then two possibilities: if S, = 2, we
know that the MRCA has been reached in an interval starting at £, which we
deal with in C5; if not, we move on to C6.

In general, there will be many intervals with different numbers of extant
segments overlapping between ¢ and r*. In C6 we iterate over each of these
intervals, decrementing the number of extant segments to account for the current
coalescence. After this has completed, we allocate the new segment o and move
on to C7. Here, we record the coalescence by updating the set C, handle any
trailing overlaps that may occur, and update x and y to point to the appropriate
next segments in their respective chains.

Step C8 is the final step of the main loop, where we insert the new segment
« into the chain representing the common ancestor. Firstly, if this segment is
null as a result of reaching the MRCA, then we have nothing to do, and so
return to the start of the main loop. The variable z is used to keep track of the
previous segment that was merged into the common ancestor’s segment chain.
Thus, if z is null we know that « is the first segment in the new chain and so we
can use this opportunity to insert the new individual into the set of ancestors
P; otherwise, we merge « into the existing chain. In both cases, we update the
number of links subtended by « as appropriate, before returning to C2.

As stated, Algorithm H correctly simulates the coalescent with recombi-
nation and returns a set of coalescence records fully describing the generated
genealogies. In the interest of brevity we have omitted some details that are
important for efficiency. Firstly, it is important to defragment segments in order
to save time and memory. That is, if we have two adjacent segments (¢, k,u)
and (k,r,u) we should merge these into a single equivalent segment (¢,r,u).
This can be done quite simply after Algorithm C has completed, and we can
detect when such defragmentation is required in step C8. Similarly, it is vital
for efficiency to opportunistically defragment the map that counts the number
of extant segments in a given interval. Since S; counts the number of segments
covering the interval [j, k), where k is the smallest key > j in S, if §; = Sk
we can simply delete the key k without loss of information. Although it does
not affect simulation efficiency, it is also important to defragment the coales-
cence records output by the algorithm. This is easily done, since any records
(¢, k,u,c,t) and (k,r,u,c,t) that can be merged must be stored sequentially
without any intervening records.

Variable recombination rates can be incorporated into Algorithm H in (at
least) two different ways. The most direct way (and the approach taken in
cosi2) is to replace the uniform weight associated with segments when they
are chosen as recombination breakpoints with a probability distribution. When
we insert a segment z into the binary indexed tree L, we currently assume that
all the links it subtends are equally likely to be the focus of a recombination
event (see steps H1, R3, R4 and C8). To implement a variable recombination
rate then, we need to assign the weights induced by the recombination map
on the subtended links to a segment when we insert it into L. We also need



to modify step R1 to generate the location of a breakpoint following the cor-
rect distribution. The changes required to the algorithm to implement this are
straightforward.

The second way to implement a variable recombination rate (and the ap-
proach currently taken in msprime) is to do so when we are generating muta-
tions, which therefore does not require any modifications to Algorithm H. In
this case we assume that the coordinates of coalescence records are in genetic
space, which we can be transformed into physical coordinates using a given ge-
netic map. Mutations are then generated in this physical coordinate space and
mapped onto the appropriate genealogies. The advantage of this approach over
the method outlined in the previous paragraph is that it is quite efficient to
implement, since we only need to use the recombination map to translate back
and forth between coordinate spaces during mutation generation. The disad-
vantage of this ‘post-processing’ approach is that other processes such as gene
conversion are more difficult to incorporate.

Incorporating selection into coalescent simulations is non-trivial, but exist-
ing methods (Spencer and Coop, 2004; Teshima and Innan, 2009; Ewing and
Hermisson, 2010; Shlyakhter et al., 2014) may be adapted to include specific
forms of selection in Algorithm H.

The implementation of msprime is closely based on Algorithm H as given
here. We also provide a simpler Python implementation in the file algorithms. py
at https://github.com/jeromekelleher/msprime-paper. This repository also
contains all code required to run the simulations, and to create all figures and
illustrations in this paper.

References

G. Ewing and J. Hermisson. MSMS: a coalescent simulation program includ-
ing recombination, demographic structure, and selection at a single locus.
Bioinformatics, 26(16):2064-2065, 2010.

P. M. Fenwick. A new data structure for cumulative frequency tables. Software:
Practice and Ezperience, 24:327-336, 1994.

P. M. Fenwick. A new data structure for cumulative frequency tables: an im-
proved frequency-to-symbol algorithm. Technical Report 110, The University
of Auckland, Department of Computer Science, 1995.

D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro-
gramming. Addison-Wesley, Reading, Massachusetts, second edition, 1998.

I. Shlyakhter, P. C. Sabeti, and S. F. Schaffner. Cosi2: an efficient simulator
of exact and approximate coalescent with selection. Bioinformatics, 30(23):
3427-3429, 2014.

C. C. Spencer and G. Coop. SelSim: a program to simulate population genetic



data with natural selection and recombination. Bioinformatics, 20(18):3673—
3675, 2004.

K. M. Teshima and H. Innan. mbs: modifying hudson’s ms software to gen-
erate samples of DNA sequences with a biallelic site under selection. BMC
Bioinformatics, 10(1):166, 2009.



